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Primordial non-Gaussianity as a
new route to falsify Inflation

—> Historical remarks
* Groth and Peebles 1977 (3-pt function)

e Strongly non-Gaussian initial conditions studied in the
eighties

 Determination of bispectrum for PSCz galaxies
(Fedman et al. 2001) 2dF galaxies (Verde et al. 2002)

* New era with f; models from inflation (Salopek &
Bond 1991; Gangui et al. 1994: f,,~ 10°%; Verde et al.
1999; Komatsu & Spergel 2001; Acquaviva et al. 2002;
Maldacena 2002; + many models with higher f, ).

* Primordial NG emerged as a new “smoking gun” of
(non-standard) inflation models, which will very soon
complement the search for primordial GW



... and to test the physics
of the Early Universe

The NG amplitude and shape measures deviations from standard inflation,
perturbation generating processes after inflation, initial state before

inflation, ...

Inflation models which would yield the same predictions for scalar spectral
index and tensor-to-scalar ratio might be distuinguishable in terms of NG

features.

We should aim at “reconstructing” the inflationary action, starting from
measurements of a few observables (like n, r, n;, fy,, 8y €tc. ...), just like in
the nineties we were aiming at a reconstruction of the inflationary potential.



Non-Gaussianity in the initial conditions



a simple-minded NG model ...
has become reality

Many primordial (inflationary) models of non-Gaussianity can be represented in
configuration space by the simple formula (Salopek & Bond 1990; Gangui et al. 1994;

Verde et al. 1999; Komatsu & Spergel 2001)
O = ¢L +fNL * ( ¢Lz - <¢L2>) + 8L+ (¢L3 - <¢L2> ¢L) + ...

where D is the large-scale gravitational potential, (I),_ its linear Gaussian contribution

and fNL is the dimensionless non-linearity parameter (or more generally non-linearity
function). The percent of non-Gaussianity in CMB data implied by this model is

NG % ~ 105 |fy,|

~ 1010 | g\, |




but .. there are more shapes of non-Gaussianity
(from inflation) than ... stars in the sky

(1) Squeezed (2) Equilateral (3) Folded

The local shape of NG (= squeezed triangles in k-space) typically arises in multi-field
inflation models (e.g. curvaton, inhomogeneous reheating, etc...)

Large NG with equilateral, orthogonal, flattened (folded) shapes, etc.. are typical of
(non-standard) single-field inflation (Bartolo, Fasiello, Matarrese & Riotto 2010) -
no need for “exotic” initial states to get flattened shape!

General (non-separable) CMB bispectra can be expanded in terms of “separable”
bispectra (Fergusson, Liguori & Shellard 2010) = general analyis

Statistical anisotropic NG typically arises if (non-)Abelian vector field are present
during inflation (see review by Dimastrogiovanni et al. 2010)




WMAP constraints

WMAP 7-yrs (Komatsu et al. 2010)

Local -10 < f, <74
Equilateral | -214< f <266

Orthogonal| -410 < f <6

(95% c.l)



Non-Gaussianity & the LSS

(= primordial NG + NG from gravitational instability)



NG and LSS

NG in LSS (to make contact with the CMB definition) can be defined through a
potential ® defined starting from the DM density fluctuation d through Poisson’s
equation (use comoving gauge for density fluctuation, Bardeen 1980)

3 -1
5= —(EQmHZ) VO

Many primordial (inflationary) models of non-Gaussianity can be
represented in configuration space by the simple formula

b = ¢L + fNL(qu% _<¢Z>) + gNL(ﬁbz —<¢f>¢L) * ...

® on sub-horizon scales reduces to minus the large-scale gravitational potential, ¢,
is the linear Gaussian contribution and f,, and g,, are dimensionless non-linearity
parameters (or more generally non-linearity functions). CMB and LSS conventions
differ by a factor 1.3 for f,, (1.3)? for g,




NG effects in LSS (mass)

Bartolo, Matarrese & Riotto (2005) computed the effects
of NG in the dark matter density fluctuations in a matter-
dominated universe. Only for high values of f,, (~10) the
standard parameterization is valid. For smaller primordial
NG strength non-Newtonian gravitational terms shift fy, by
a term ~ - 1.6 (see Verde & Matarrese 2010). On small
scales stagnation effects during radiation dominance have
to be taken into account up to second order. (Bartolo,
Matarrese & Riotto 2007; Senatore et al. 2009).

Sefusatti & Komatsu (2007) show that LSS becomes
competitive with CMB at z > 2.

but .. mass NG is not (all) we measure with galaxy NG




NG effects on the matter PS:
local shape

Calculation based on Renormalization Group (RG)
(Matarrese & Pietroni 2007; Pietroni 2008) technique
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Figure 5. Ratio of the non-Gaussian to Gaussian power spectrum for several values of fni, in the local
model. The dots correspond to the data from the N-body simulations of [54]. The red (continuous)
line is the TRG result of this paper and the blue (dashed) line is the one-loop result.

Bartolo, Beltran Almeida, Matarrese, Pietroni & Riotto 2010



NG effects on the matter PS:
equilateral and folded shapes
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Figure 6. Ratio of the non-Gaussian to Gaussian power spectrum for several values of fyi, in the
equilateral (top panels) and folded (bottom panels) models. The red (continuous) lines are the TRG
result of this paper and the blue (dashed) lines are the one-loop result.

Bartolo, Beltran Almeida, Matarrese, Pietroni & Riotto 2010



Comparison of RG with N-body
simulations (local case)

Png(K)/Pg(K)
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from: Wagner, Verde & Boubekeur 2010



Comparison of RG with N-body
simulations (equilateral case)

Png(K)/Pg(K)
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Searching for non-Gaussianity with
rare events

Besides using standard statistical estimators, like (mass) bispectrum, trispectrum,
three and four-point function, skewness, etc. ..., one can look at the tails of the
distribution, i.e. at rare events.

Rare events have the advantage that they often maximize deviations from what
predicted by a Gaussian distribution, but have the obvious disadvantage of being rare!
But remember that, according to Press-Schechter-like schemes, all collapsed DM halos
correspond to (rare) peaks of the underlying density field.

Matarrese, Verde & Jimenez (2000) and Verde, Jimenez, Kamionkowski & Matarrese
showed that clusters at high redshift (z>1) can probe NG down to f, ~ 102

Alternative approach by LoVerde et al. (2007). Determination of mass function using
stochastic approach (first-crossing of a diffusive barrier) Maggiore & Riotto 2009.
Ellispsoidal collapse used by Lam & Sheth 2009. Saddle-point + diffusive barrier
(Paranjape et al. 2010). Log-Edgeworth expantion: LoVerde & Smith 2011. Excursion
sets studied with correlated steps: Paranjape, Lam & Sheth 2011; Paranjape & Sheth
2011.

Excellent agreement of analytical formulae with N-body simulations found by Grossi et
al. 2009 ... and many others.



Different approaches
to the NG halo mass function
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Figure 6: Same as Fig. 5, but including filter effects. These affect only the error bars for MVJ and LMSV, and they
affect both the curve and the error bars for MR and our result. For MR and our result, the Gaussian mass function
used to construct the ratio Ry, is taken as the non-Gaussian result at fnr. = 0, and hence includes filter effects.

from: D’Amico et al. 2010



NG vs. Halo Mass Function

Relevant effects:

— non-Markovianity, already there in Gaussian case, unavoidable
in NG case

— non-spherical collapse
— connecting random walks w. DM halos
— diffusive collapse threshold?

Dealing with rare events i.e. tails of NG distribution

Validation with N-body simulations crucial (although very
rare events/tails not probed by finite number of
realizations = analytical treatments welcome!)

Understanding/definition of connection between
analytical/numerical quantities and real observables = to
what level is this affecting NG (e.g. f,,) measurements?



DM halo clustering as (the most stringent?)
constraint on NG

6halo =bd

matter

Dalal et al. (2007) have shown that halo
bias is sensitive to primordial non-Gaussianity
through a scale-dependent correction term

Dalal, Dore’, Huterer & Shirokov 2007
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Clustering of peaks (DM halos) of NG
density field

Start from results obtained in the 80’s by
Grinstein & Wise 1986, ApJ, 310, 19

Matarrese, Lucchin & Bonometto 1986, ApJ, 310, L21

giving the general expression for the peak 2-point
function as a function of N-point connected
correlation functions of the background linear (i.e.
Lagrangian) mass-density field
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(requires use of path-integral, cluster expansion,

multinomial theorem and asymptotic expansion). The

analysis of NG models was motivated by a paper by

Vittorio, Juszkiewicz and Davis (1986) on bulk flows.

THE ASTROPHYSICAL JOURNAL, 310:1.21-126, 1986 November 1
© 1986. The American Astronomical Socicty. All rights reserved. Printed in U.S.A.
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ABSTRACT

The possibility that, in the framework of a biased theory of galaxy clustering, the underlying matter
distribution be non-Gaussian itself, because of the very mechanisms generating its present status, is explored.
We show that a number of contradictory results, seemingly present in large-scale data, in principle can recover
full coherence, once the requirement that the underlying matter distribution be Gaussian is dropped. For
example, in the present framework the requirement that the two-point correlation functions vanish at the same
scale (for different kinds of objects) is overcome. A general formula, showing the effects of a non-Gaussian
background on the expression of three-point correlations in terms of two-point correlations, is given.

Subject heading: galaxies: clustering
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ABSTRACT

Natural primordial mass density fluctuations are those for which the probability distribution, for mass
density fluctuations averaged over the horizon volume, is independent of time. This criterion determines that
the two-point correlation of mass density fluctuations has a Zeldovich power spectrum (i.e., a power spectrum
proportional to k at small wavenumbers) but allows for many types of reduced (connected) higher correla-
tions. Assuming galaxies or rich clusters of galaxies arise wherever suitably averaged natural mass density
fluctuations are unusually large, we show that the two-point correlation of galaxies or rich clusters of galaxies
can have significantly more power at small wavenumbers (e.g., a power spectrum proportional to 1/k at small
wavenumbers) than the Zeldovich spectrum. This behavior is caused by the non-Gaussian part of the prob-
ability distribution for the primordial mass density fluctuations.

Subject headings: cosmology — galaxies: clustering



Halo bias in NG models

Matarrese & Verde 2008 applied this relation to the case of NG of the
Erawta‘nonal potential, obtaining the power-spectrum of dark matter

alos modeled as high “peaks” (up-crossing regions) of height v=0_/0;, of
the underlying mass density field (Kaiser’s model). Here 6C(z% is the critical
overdensity for collapse (at redshift a) and o is the rms mass fluctuation
on scale R (M ~ R3).

Account for motion of peaks (going from Lagrangian to Eulerian space),
which implies (Catelan et al. 1998)

1+ 6h(XEu|erian) = (1+6h(x|_agrangian))(1+6R(xEu|erian))

and (to linear order) b=1+b, (Mo & White 1996) to get the scale-
dependent halo bias in the presence of NG initial conditions. Corrections
may arise from second-order bias and GR terms.

Alternative aBproaches (e.g. based on 1-loop calculations) by Taruya et al.
2008; Matsubara 2009; Jeong & Komatsu 2009. Giannantonio & Porciani
2010 improve fit to N-body simulations by assuming dependence on
gravitational potential) = extension to bispectrum by Baldauf et al. 2011



Halo bias in NG models

Extenﬁlon to general (scale and configuration dependent) NG is
straightforward

In full generality write the ¢ bispectrum as B(k,,kj,k;). The
relatlve NG correction to the halo bias is

Ab,  Ac(z) 1 i
= Iy ks M p(k
b, D(z) 87202, _/‘ 1R MR(h1) X
1
BH{LJ P x_.f"{:. -!1]' 1
diM /av : .
/_l pMe (V) =5 M (k)

Yy = 1'11% —l— 111'2 ‘l’ 21'11']_1!{]{!

It also applies to non-local (e. %\I equﬂate 3”) NG (DBI, ﬁho_st
inflation, etc.. )an d universal NG term!! see also Schmidt &
Kamionkowski'2010).

Calibrated to N- bod% imulations by Grossi et aI (2009),
Desjacques et al. 2009; | epich et aI 009,



Observational status

Data/method fnp, (local-type 95%CL)  reference ad ref to bibl
Photometric LRG - bias 63135 201 Slosar et al. 2008
Spectroscopic LRG- bias 70T I3 1Y Slosar et al. 2008

QSO - bias A Slosar et al. 2008
combined 28 23+22 Slosar et al. 2008
NVSS-ISW 10515374705, Slosar et al. 2008
NVSS-ISW 236 + 127(2 — o) Afshordi&Tolley 2008
NVSS-ACF (bias + ISW) 10 < f <106 Xia et al. 2010
SDSS DR6 QSOs (bias + ISW) 58 + 24 (1 sigma) Xia et al. 2010

—> Xia et al. (2011) analysis in terms of C: 5 < fy, < 84 (2 sigma)



Constraints on NG from high-z probes

Xia, Baccigalupi, Matarrese, Verde & Viel arXiv:1104.5015v2 [astro-ph.CO]
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Angular power-spectra

Xia, Baccigalupi, Matarrese, Verde & Viel arXiv:1104.5015v2 [astro-ph.CO]
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FIG. 2: Observed angular power spectra of three LSS tracers. The black dashed lines are the best fit models using angular
power spectra only. The red solid lines are the best fit models fn1, = 48 when using all data together. For illustration purposes,
we show the binned power spectra with the bin size A¢ = 10.



Angular Cross-Spectra

Xia, Baccigalupi, Matarrese, Verde & Viel arXiv:1104.5015v2 [astro-ph.CO]
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FIG. 3: Left Panels: Observed cross-correlation power spectra among three LSS tracers. Right Panels: Observed cross-
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when using all data together. For illustration purposes, we show the binned power spectra with the bin size Af = 10.



Constraints on Primordial NG

Xia, Baccigalupi, Matarrese, Verde & Viel arXiv:1104.5015v2 [astro-ph.CO]

Datasets Non-Gaussianity
WMAP7+BAO+SN lo 20
Local Type fnL

+CFX(NVSS) 78 +£52 | [—34,187]
+CXX + CXT(NVSS) 74440 |[-16,166]

+C7*(QS0) 62+26 | [5,115]

+CF* + ¥ (QS0) 59+21 | [17,103]
Note: Multipoles with I<10 have +CFX(LRQG) 165 + 105 | [—81, 351]
been excluded in the analysis. +O7X + CFT(LRG) | 15305 | [-51, 347]
+CXX(ALL) 68 + 22 [22,108]

Reintroducing them and allowing X% XY Xt aril a8+ 90 .
: . + + Cp ™ + Ch L y 5, 8

for a constraint on number yields : L = ‘1[ ( lT) — 5,84
. quilateral lemplate fNL

back Xia et al. 2010 results for NVSS T 1 OF + OFT(ALL)| 50 £ 265 |[419,625)

Enfolded Template fNL

Note: For enfolded and equilateral XX 4 OFY + CXF(ALL)| 183+ 95 | [-12, 358
we useq l_:h’e template’ but Cubic Correction gy, x 107°
.. see Licia’s talk +CXX L XY + XN (ALL)| 5.7+ 3.0 [[-1.2,11.3]

for the orthogonal template: fOith = —92 + 47 (10) and —179 < fO&* < 6 (20)



Observational prospects

Data/method Afnt (1 —o0) reference
BOSS-bias 18 Carbone et al 2008
ADEPT /Euclid-bias 1.5 Carbone et al 2008
PANNStarrs —bias 3.5 Carbone et al 2008
LSST-bias 0.7 Carbone et al 2008
LSST-ISW 7 Afshordi& Tolley 2008
BOSS-bispectrum 35 Sefusatti & Komatsu 2008
ADEPT /Euclid -bispectrum 3.6 Sefusatti & Komatsu 2008
Planck-Bispectrum 3 Yadav et al . 2007
BPOL-Bispectrum 2 Yadav et al . 2007




Can we test standard
single-field inflation NG?

* GR contributions to fy, are universally present and can be seen through their effect
on halo biasing (Verde & Matarrese 2009)
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Figure 1. Scale dependence of the large-scale halo bias induced by a non-zero
bispectrum, indicated by the 8 function of Equation (3) for the four types of
non-Gaussianity discussed in the text. The solid line shows the absolute value of
B for the inflationary, GR correction large-scale structure bispectrum. Note that
the quantity is actually negative. The dashed line shows 8 for the local type of
primordial non-Gaussianity for jr!ff = | (the quantity is positive). It is clear that
the scale-dependent bias effect due to the inflationary bispectrum mimics a local
primordial non-Gaussianity with effective fyp ~ —1 at k > 0.02H /Mpc and
~ — 1.6 for k < 0.01h/Mpc. The dot-dot-dot-dashed line shows the effect of
equilateral non-Gaussianity for fﬁ?_ = | and the dotted line shows the enfolded

type with j{‘l’_f =1

.jnﬂ,GR(k. ki k) = 5 l 5 kik jcost;
l . . — - - - A~
Table 1
Forecasted Non-Gaussianity Constraints

Type NG CMB Bispectrum Halo Bias
Planck (CM)BPol Euclid LSST
lo errors

Local 3(‘»1) 2(.4’) 1 .5(8) 0.7(8)

Equilateral 25(€) 14©) cas .

Enfolded 010 @10 39(E) 18'£)

#o Detection
GR N/A N/A 15 2E)
Secondaries 3(F) 5(F) N/A N/A

References. (1) Yadav et al. 2007, (2) Carbone et al. 2008, (3)
Baumann et al. 2009; Sefusatti et al. 2009, (4) this work, (5) e.g.,
Mangilli & Verde 2009.



Conclusions

S~ Contrary to earlier naive expectations, some level of non-Gaussianity is
generically present in all inflation models. The level of non-Gaussianity
predicted in the simplest (single-field, slow-roll, canonical kinetic term,
BD initial state) inflation is slightly below the minimum value
detectable by Planck and at reach of future galaxy surveys (accounting
for GR effects)

"7 Constraining/detecting non-Gaussianity is a powerful tool to
discriminate among competing scenarios for perturbation generation
(standard slow-roll inflation, curvaton, modulated-reheating, DBI,
ghost inflation, multi-field, etc. ...) some of which imply large non-
Gaussianity. Non-Gaussianity will soon become the smoking-gun for
non-standard inflation models.



